Question.
A matchbox measures $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. What will be the volume of a packet containing 12 such boxes?
Solution:
Matchbox is a cuboid having its length $(l)$, breadth $(b)$, height $(h)$ as $4 \mathrm{~cm}, 2.5 \mathrm{~cm}$, and $1.5 \mathrm{~cm}$.
Volume of 1 match box $=1 \times b \times h$
$=(4 \times 2.5 \times 1.5) \mathrm{cm}^{3}=15 \mathrm{~cm}^{3}$
Volume of 12 such matchboxes $=(15 \times 12) \mathrm{cm}^{3}$
$=180 \mathrm{~cm}^{3}$
Therefore, the volume of 12 match boxes is $180 \mathrm{~cm}^{3}$.
Matchbox is a cuboid having its length $(l)$, breadth $(b)$, height $(h)$ as $4 \mathrm{~cm}, 2.5 \mathrm{~cm}$, and $1.5 \mathrm{~cm}$.
Volume of 1 match box $=1 \times b \times h$
$=(4 \times 2.5 \times 1.5) \mathrm{cm}^{3}=15 \mathrm{~cm}^{3}$
Volume of 12 such matchboxes $=(15 \times 12) \mathrm{cm}^{3}$
$=180 \mathrm{~cm}^{3}$
Therefore, the volume of 12 match boxes is $180 \mathrm{~cm}^{3}$.