A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the light house from 60° to 30°.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the light house from 60° to 30°. Find the speed of the boat in metres per minute. [Use $\sqrt{3}=1.732 .]$
Let AB be the light house. Suppose C and D be the two positions of the boat.
Here, AB = 100 m.
Let the speed of the boat be v m/min.
So,
CD = v m/min × 2 min = 2v m [Distance = Speed × Time]
In right ∆ABC,
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \sqrt{3}=\frac{100 \mathrm{~m}}{B C}$
$\Rightarrow \mathrm{BC}=\frac{100}{\sqrt{3}}=\frac{100 \sqrt{3}}{3} \mathrm{~m} \quad \ldots . .(1)$
In right ∆ABD,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{100 \mathrm{~m}}{\mathrm{BC}+\mathrm{CD}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{100}{\frac{100 \sqrt{3}}{3}+2 v} \quad[$ From $(1)]$
$\Rightarrow 2 v+\frac{100 \sqrt{3}}{3}=100 \sqrt{3}$
$\Rightarrow 2 v=100 \sqrt{3}-\frac{100 \sqrt{3}}{3}$
$\Rightarrow 2 v=100 \sqrt{3}\left(1-\frac{1}{3}\right)$
$\Rightarrow 2 v=100 \sqrt{3} \times \frac{2}{3}$
$\Rightarrow v=\frac{100 \times 1.732}{3}=57.73 \mathrm{~m} / \mathrm{min}$
Thus, the speed boat is 57.73 m/min.