A man arranges to pay off a debt of ₹36000 by 40 monthly instalments which form an arithmetic series.
A man arranges to pay off a debt of ₹36000 by 40 monthly instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid. Find the value of the first instalment.
Let the value of the first instalment be ₹a.
Since the monthly instalments form an arithmetic series, so let us suppose the man increases the value of each instalment by ₹d every month.
∴ Common difference of the arithmetic series = ₹d
Amount paid in 30 instalments $=₹ 36,000-\frac{1}{3} \times ₹ 36,000=₹ 36,000-₹ 12,000=₹ 24,000$
Let Sn denote the total amount of money paid in the n instalments. Then,
$S_{30}=₹ 24000$
$\Rightarrow \frac{30}{2}[2 a+(30-1) d]=24000 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 15(2 a+29 d)=24000$
$\Rightarrow 2 a+29 d=1600 \quad \ldots(1)$
Also,
$S_{40}=₹ 36,000$
$\Rightarrow \frac{40}{2}[2 a+(40-1) d]=36000$
$\Rightarrow 20(2 a+39 d)=36000$
$\Rightarrow 2 a+39 d=1800 \quad \ldots(2)$
Subtracting (1) from (2), we get
$(2 a+39 d)-(2 a+29 d)=1800-1600$
$\Rightarrow 10 d=200$
$\Rightarrow d=20$
Putting d = 20 in (1), we get
$2 a+29 \times 20=1600$
$\Rightarrow 2 a+580=1600$
$\Rightarrow 2 a=1600-580=1020$
$\Rightarrow a=510$
Thus, the value of the first instalment is ₹510.