A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is
(a) $1.6 \mathrm{~km} / \mathrm{hr}$
(b) $6.3 \mathrm{~km} / \mathrm{hr}$
(c) $5 \mathrm{~km} / \mathrm{hr}$
(d) $3.2 \mathrm{~km} / \mathrm{hr}$
Let AB be the lamp post. Suppose at any time t, the man CD be at a distance of x km from the lamp post and y m be the length of his shadow CE.
Since triangles $A B E$ and $C D E$ are similar,
$\frac{A B}{C D}=\frac{A E}{C E}$
$\Rightarrow \frac{5}{2}=\frac{x+y}{y}$
$\Rightarrow \frac{x}{y}=\frac{5}{2}-1$
$\Rightarrow \frac{x}{y}=\frac{3}{2}$
$\Rightarrow y=\frac{2}{3} x$
$\Rightarrow \frac{d y}{d t}=\frac{2}{3}\left(\frac{d x}{d t}\right)$
$\Rightarrow \frac{d y}{d t}=\frac{2}{3} \times 4.8$
$\Rightarrow \frac{d y}{d t}=3.2 \mathrm{~km} / \mathrm{hr}$