Question:
A machine is purchased for Rs 625000. Its value depreciates at the rate of 8% per annum. What will be its value after 2 years?
Solution:
Initial value of the machine, $P=$ Rs 625000
Rate of depreciation, $R=8 \%$
Time, $n=2$ years
Then the value of the machine after two years is given by
Value $=P \times\left(1-\frac{R}{100}\right)^{n}$
$=$ Rs $625000 \times\left(1-\frac{8}{100}\right)^{2}$
$=$ Rs $625000 \times\left(\frac{100-8}{100}\right)^{2}$
$=$ Rs $625000 \times\left(\frac{92}{100}\right)^{2}$
$=$ Rs $625000 \times\left(\frac{23}{25}\right)^{2}$
$=$ Rs $625000 \times\left(\frac{23}{25}\right) \times\left(\frac{23}{25}\right)$
$=$ Rs $(1000 \times 23 \times 23)$
$=$ Rs 529000
Therefore, the value of the machine after two years will be Rs. 529000 .