A line parallel to the straight line

Question:

A line parallel to the straight line $2 x-y=0$ is tangent to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ at the point $\left(x_{1}, y_{1}\right)$. Then $x_{1}^{2}+5 y_{1}^{2}$ is equal to :

  1. (1) 6

  2. (2) 8

  3. (3) 10

  4. (4) 5


Correct Option: 1

Solution:

The tangent to the hyperbola at the point $\left(x_{1}, y_{1}\right)$ is,

$x x_{1}-2 y y_{1}-4=0$

The given equation of tangent is

$2 x-y=0$

$\Rightarrow \frac{x_{1}}{2 y_{1}}=2$

$\Rightarrow x_{1}=4 y_{1}$ ...(i)

Since, point $\left(x_{1}, y_{1}\right)$ lie on hyperbola.

$\therefore \frac{x_{1}^{2}}{4}-\frac{y_{1}^{2}}{2}-1=0$ ...(ii)

On solving eqs. (i) and (ii)

$y_{1}^{2}=\frac{2}{7}, x_{1}^{2}=\frac{32}{7}$

$\therefore \quad x_{1}^{2}+5 y_{1}^{2}=\frac{32}{7}+5 \times \frac{2}{7}=6$

Leave a comment