A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Let the dimensions of the rectangle be $x$ and $y$.
Perimeter of the window $=x+y+x+x+y=12$
$\Rightarrow 3 x+2 y=12$
$\Rightarrow y=\frac{12-3 x}{2}$ ......(1)
Area of the window $=x y+\frac{\sqrt{3}}{4} \mathrm{x}^{2}$
$\Rightarrow A=x\left(\frac{12-3 x}{2}\right)+\frac{\sqrt{3}}{4} x^{2}$
$\Rightarrow A=6 x-\frac{3 x^{2}}{2}+\frac{\sqrt{3}}{4} x^{2}$
$\Rightarrow \frac{d A}{d x}=6-\frac{6 x}{2}+\frac{2 \sqrt{3}}{4} x$
$\Rightarrow \frac{d A}{d x}=6-3 x+\frac{\sqrt{3}}{2} x$
$\Rightarrow \frac{d A}{d x}=6-x\left(3-\frac{\sqrt{3}}{2}\right)$
For maximum or a minimum values of A, we must have
$\frac{d A}{d x}=0$
$\Rightarrow 6=x\left(3-\frac{\sqrt{3}}{2}\right)$
$\Rightarrow x=\frac{12}{6-\sqrt{3}}$
Substituting the value of $x$ in eq. $(1)$, we get
$y=\frac{12-3\left(\frac{12}{6-\sqrt{3}}\right)}{2}$
$\Rightarrow y=\frac{18-6 \sqrt{3}}{6-\sqrt{3}}$
Now,
$\frac{d^{2} A}{d x^{2}}=-3+\frac{\sqrt{3}}{2}<0$
Thus, the area is maximum when $x=\frac{12}{6-\sqrt{3}}$ and $y=\frac{18-6 \sqrt{3}}{6-\sqrt{3}} .$
Disclaimer: The solution given in the book is incorrect. The solution here is created according to the question given in the book.