A ladder rests against a wall at an angle α to the horizontal. Its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal. Show that
$\frac{a}{b}=\frac{\cos \alpha-\cos \beta}{\sin \beta-\sin \alpha}$
Let be the ladder such that its top is on the wall and bottom is on the ground. The ladder is pulled away from the wall through a distance a, so that its top slides and takes position. So
$\angle O P Q=\alpha$ And $\angle O P^{\prime} Q^{\prime}=\beta$. Let $P Q=h$
We have to prove that
$\frac{a}{b}=\frac{\cos \alpha-\cos \beta}{\sin \beta-\sin \alpha}$
We have the corresponding figure as follows
We use trigonometric ratios.
In $\triangle P O Q$
$\Rightarrow \quad \sin \alpha=\frac{O Q}{P O}$
$\Rightarrow \quad \sin \alpha=\frac{b+y}{h}$
And
$\Rightarrow \quad \cos \alpha=\frac{O P}{P Q}$
$\Rightarrow \quad \cos \alpha=\frac{x}{h}$
Again in $\triangle P^{\prime} O Q^{\prime}$
$\Rightarrow \quad \sin \beta=\frac{O Q^{\prime}}{P^{\prime} Q^{\prime}}$
$\Rightarrow \quad \sin \beta=\frac{y}{h}$
And
$\Rightarrow \quad \cos \beta=\frac{O P^{\prime}}{P^{\prime} O^{\prime}}$
$\Rightarrow \quad \cos \beta=\frac{a+x}{h}$
Now,
$\Rightarrow \sin \alpha-\sin \beta=\frac{b+y}{h}-\frac{y}{h}$
$\Rightarrow \sin \alpha-\sin \beta=\frac{b}{h}$
So
$\Rightarrow \frac{\sin \alpha-\sin \beta}{\cos \beta-\cos \alpha}=\frac{b}{a}$
$\Rightarrow \quad \frac{a}{b}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$
$\Rightarrow \quad \frac{a}{b}=\frac{\cos \alpha-\cos \beta}{\sin \beta-\sin \alpha}$
Hence $\frac{a}{b}=\frac{\cos \alpha-\cos \beta}{\sin \beta-\sin \alpha}$.