A ladder against a vertical wall at an inclination a to the horizontal. Sts foot is pulled away from the wall through a distance p, so that its upper end slides
a distance q down the wall and then the ladder makes an angle B to the horizontal. Show that
$\frac{p}{q}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$
Iet $\quad O O=x$ and $O A=v$
Given that, $B Q=q, S A=P$ and $A B=S Q=$ Length of ladder
Also, $\angle B A O=\alpha$ and $\angle Q S O=\beta$
Now, in $\triangle B A O$,
$\cos \alpha=\frac{O A}{\Delta R}$
$\Rightarrow$ $\cos \alpha=\frac{y}{A B}$
$\Rightarrow$ $y=A B \cos \alpha=O A$ $\ldots$ (i)
and $\sin \alpha=\frac{O B}{A B}$
$\Rightarrow \quad O B=B A \sin \alpha$ .....(ii)
Now, in $\triangle Q S O$
$\cos \beta=\frac{O S}{S Q}$
$\Rightarrow \quad O S=S Q \cos \beta=A B \cos \beta$ $[\because A B=S Q] \ldots$ (iii)
and $\sin \beta=\frac{O Q}{S Q}$
$\Rightarrow \quad O Q=S Q \sin \beta=A B \sin \beta$ $[\because A B=S Q] \ldots$ (iv)
Now, $S A=O S-A O$
$P=A B \cos \beta-A B \cos \alpha$
$\Rightarrow \quad P=A B(\cos \beta-\cos \alpha)$ $\ldots(v)$
and $\quad B Q=B O-Q O$
$\Rightarrow \quad q=B A \sin \alpha-A B \sin \beta$
$\Rightarrow \quad q=A B(\sin \alpha-\sin \beta)$ $\ldots$ (vi)
Eq. (v) divided by Eq. (vi), we get
$\frac{p}{q}=\frac{A B(\cos \beta-\cos \alpha)}{A B(\sin \alpha-\sin \beta)}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$
$\Rightarrow$ $\frac{p}{q}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$
Hence proved.