Question:
A jeweller allows a discount of 16% to his customers and still gains 20%. Find the marked price of a ring which costs the jeweller Rs 1190.
Solution:
The cost price of the ring is $R s 1190$.
Gain percentage $=20 \%$.
$\therefore$ Selling price $=\left\{\frac{(100+\text { gain } \%)}{100} \times C . P\right\}$
$=\left\{\frac{100+20}{100} \times 1190\right\}$
$=\frac{120}{100} \times 1190$ $=$ Rs 1428
Let the marked price be $x$.
Discount $=16 \%$ of Rs $x$
$=\frac{16 x}{100}$
SP = MP − Discount
$\Rightarrow 1428=x-\frac{16 x}{100}$
$\Rightarrow 1428=\frac{100 x-16 x}{100}$
$\Rightarrow 142800=84 x$
$\Rightarrow \frac{142800}{84}=x$
$\Rightarrow x=1700$
Therefore, the marked price of the ring is Rs 1700 .