$\cos A=-\sqrt{1-\sin ^{2} A}$ and $\cos B=\sqrt{1-\sin ^{2} B}$
( As cosine function is negative in second qudrant and positive in first quadrant)
$\Rightarrow \cos A=-\sqrt{1-\left(\frac{12}{13}\right)^{2}}$ and $\cos B=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$\Rightarrow \cos A=-\sqrt{1-\frac{144}{169}}$ and $\cos B=\sqrt{1-\frac{16}{25}}$
$\Rightarrow \cos A=-\sqrt{\frac{25}{169}}$ and $\cos B=\sqrt{\frac{9}{25}}$
$\Rightarrow \cos A=\frac{-5}{13} \quad$ and $\quad \cos B=\frac{3}{5}$
Now,
(i) $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$=\frac{12}{13} \times \frac{3}{5}+\frac{-5}{13} \times \frac{4}{5}$
$=\frac{36}{65}+\frac{-20}{65}$
$=\frac{16}{65}$
(ii) $\cos (A+B)=\cos A \cos B-\sin A \sin B$
$=\frac{-5}{13} \times \frac{3}{5}-\frac{12}{13} \times \frac{4}{5}$
$=\frac{-15}{65}-\frac{48}{65}$
$=\frac{-63}{65}$
(b) Given:
$\sin A=\frac{3}{5}$ and $\cos B=-\frac{12}{13}$
and that $A$ and $B$ both lie in second qudrant.
We know that in second quadrant $\sin e$ function is positive and cosine function is negative.
Therefore,
$\cos A=-\sqrt{1-\sin ^{2} A} \quad$ and $\quad \sin B=\sqrt{1-\cos ^{2} B}$
$\Rightarrow \cos A=-\sqrt{1-\left(\frac{3}{5}\right)^{2}} \quad$ and $\quad \sin B=\sqrt{1-\left(\frac{-12}{13}\right)^{2}}$
$\Rightarrow \cos A=-\sqrt{1-\frac{9}{25}} \quad$ and $\quad \sin B=\sqrt{1-\frac{144}{169}}$
$\Rightarrow \cos A=-\sqrt{\frac{16}{25}} \quad$ and $\quad \sin B=\sqrt{\frac{25}{69}}$
$\Rightarrow \cos A=\frac{-4}{5} \quad$ and $\sin B=\frac{5}{13}$
Now,
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$=\frac{3}{5} \times \frac{-12}{13}+\frac{-4}{5} \times \frac{5}{13}$
$=\frac{-36}{65}-\frac{20}{65}$
$=\frac{-56}{65}$