A huge circular arc

Question:

A huge circular arc of length $4.4$ ly subtends an angle ' $4 s^{\prime}$ at the centre of the circle. How long it would take for a body to complete 4 revolution if its speed is 8 AU per second ?

Given : $1 \mathrm{lv}=9.46 \times 10^{15} \mathrm{~m}$

$1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$

  1. $4.1 \times 10^{8} \mathrm{~s}$

  2. $4.5 \times 10^{10} \mathrm{~s}$

  3. $3.5 \times 10^{6} \mathrm{~s}$

  4. $7.2 \times 10^{8} \mathrm{~s}$


Correct Option: , 2

Solution:

$\mathrm{R}=\frac{\ell}{\theta}$

$\operatorname{Time}=\frac{4 \times 2 \pi R}{\mathrm{~V}}=\frac{4 \times 2 \pi}{\mathrm{V}}\left(\frac{\ell}{\theta}\right)$

put $\ell=4.4 \times 9.46 \times 10^{15}$

$\mathrm{v}=8 \times 1.5 \times 10^{11}$

$\theta=\frac{4}{3600} \times \frac{\pi}{180} \mathrm{rad}$

we get time $=4.5 \times 10^{10} \mathrm{sec}$

Leave a comment

Comments

maxxy
Aug. 28, 2023, 6:35 a.m.
nice soln