A hollow sphere of internal and external radii 2 cm and 4 cm respectively is melted into a cone of base radius 4 cm. Find the height and slant height of the cone.
The internal and external radii of the hollow sphere are 2cm and 4cm respectively. Therefore, the volume of the hollow sphere is
$V=\frac{4}{3} \pi\left\{(4)^{3}-(2)^{3}\right\}$
$=\frac{4}{3} \times \frac{22}{7} \times 56$
$=\frac{32 \times 22}{3}$
The hollow sphere is melted to produce a right circular cone of base-radius 4cm. Let, the height and slant height of the cone be h cm and l cm respectively. Then, we have
$l^{2}=(4)^{2}+h^{2}$
$\Rightarrow l^{2}=16+h^{2}$
The volume of the cone is
$V_{1}=\frac{1}{3} \pi r_{1}^{2} h_{1}$
$=\frac{1}{3} \times \frac{22}{7} \times(4)^{2} \times h$
Since, the volume of the cone and hollow sphere are same, we have
$V_{1}=V$
$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times(4)^{2} \times h=\frac{32 \times 22}{3}$
$\Rightarrow \quad \frac{1}{7} \times(4)^{2} \times h=32$
$\Rightarrow \quad h=\frac{32 \times 7}{16}$
$\Rightarrow \quad=14$
Then, we have
$I^{2}=16+(14)^{2}$
$\Rightarrow=212$
$\Rightarrow I=14.56$
Therefore, the height and the slant height of the cone are 14 cm and 14.56 cm respectively.