Question:
A hollow sphere of internal and external diameters 4 cm and 8 cm respectively is melted into a cone of base diameter 8 cm. The height of the cone is
(a) 12 cm
(b) 14 cm
(c) 15 cm
(d) 18 cm
Solution:
External radius $r_{\mathrm{i}}=\frac{8}{2}=4 \mathrm{~cm}$
Internal radius $r_{2}=\frac{4}{2}=2 \mathrm{~cm}$
The volume of hollow sphere
$V=\frac{4}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)$
$=\frac{4}{3} \pi\left(4^{3}-2^{3}\right)$
Let h be the height of cone.
Clearly,
The volume of recasted cone = volume of hollow sphere
$\frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi\left(4^{3}-2^{3}\right)$
$\Rightarrow 4^{2} \mathrm{~h}=4\left(4^{3}-2^{3}\right)$
$\Rightarrow \mathrm{h}=14 \mathrm{~cm}$
Hence, the height of cone = 14 cm
Hence, the correct answer is choice (b).