A hemispherical bowl of internal radius 9 cm is full of water. Its contents are emptied into a cylindrical vessel of internal radius 6 cm. Find the height of water in the cylindrical vessel.
We have,
the radius of the hemispherical bowl, $R=9 \mathrm{~cm}$ and
the internal base radius of the cylindrical vessel, $r=6 \mathrm{~cm}$
Let the height of the water in the cylindrical vessel be $h$.
As,
Volume of water in the cylindrical vessel $=$ Volume of hemispherical bowl
$\Rightarrow \pi r^{2} h=\frac{2}{3} \pi R^{3}$
$\Rightarrow r^{2} h=\frac{2}{3} R^{3}$
$\Rightarrow 6 \times 6 \times h=\frac{2}{3} \times 9 \times 9 \times 9$
$\Rightarrow h=\frac{2}{3} \times \frac{9 \times 9 \times 9}{6 \times 6}$
$\Rightarrow h=\frac{27}{2}$
$\therefore h=13.5 \mathrm{~cm}$
So, the height of the water in the cylindrical vessel is 13.5 cm.