A function $f: R \rightarrow R$ is defined as $f(x)=x^{3}+4$. Is it a bijection or not? In case it is a bijection, find $f^{-1}(3)$.
Injectivity of $f$.
Let $x$ and $y$ be two elements of domain $(R)$, such that
$f(x)=f(y)$
$\Rightarrow x^{3}+4=y^{3}+4$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow x=y$
So, f is one-one.
Surjectivity of f:
Let y be in the co-domain (R), such that f(x) = y.
$\Rightarrow x^{3}+4=y$
$\Rightarrow x^{3}=y-4$
$\Rightarrow x=\sqrt[3]{y-4} \in R$ (domain)
$\Rightarrow f$ is onto.
So, $f$ is a bijection and, hence, is invertible.
Finding $f^{-1}$ :
Let $f^{-1}(x)=y \quad \ldots(1)$
$\Rightarrow x=f(y)$
$\Rightarrow x=y^{3}+4$
$\Rightarrow x-4=y^{3}$
$\Rightarrow y=\sqrt[3]{x-4}$
So, $f^{-1}(x)=\sqrt[3]{x-4} \quad[$ from $(1)]$
$f^{-1}(3)=\sqrt[3]{3-4}=\sqrt[3]{-1}=-1$