A free electron of

Question:

A free electron of $2.6 \mathrm{eV}$ energy collides with a $\mathrm{H}^{+}$ion. This results in the formation of a hydrogen atom in the first excited state and a photon is released. Find the frequency of the emitted photon.

$\left(h=6.6 \times 10^{-34} \mathrm{Js}\right)$

  1. $1.45 \times 10^{16} \mathrm{MHz}$

  2.  $0.19 \times 10^{15} \mathrm{MHz}$

  3. $1.45 \times 10^{9} \mathrm{MHz}$

  4. $9.0 \times 10^{27} \mathrm{MHz}$


Correct Option: , 3

Solution:

For every large distance P.E. $=0$

$\&$ total energy $=2.6+0=2.6 \mathrm{eV}$

Finally in first excited state of $\mathrm{H}$ atom total energy $=-3.4 \mathrm{eV}$

$\begin{aligned} \text { Loss in total energy } &=2.6-(-3.4) \\ &=6 \mathrm{eV} \end{aligned}$

It is emitted as photon

$\lambda=\frac{1240}{6}=206 \mathrm{~nm}$

$f=\frac{3 \times 10^{8}}{206 \times 10^{-9}}=1.45 \times 10^{15} \mathrm{~Hz}$

$=1.45 \times 10^{9} \mathrm{~Hz}$

Leave a comment