(a) For what kinetic energy of a neutron will the associated de Broglie wavelength be 1.40 × 10−10 m?
(b) Also find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of (3/2) kT at 300 K.
(a) De Broglie wavelength of the neutron, λ = 1.40 × 10−10 m
Mass of a neutron, mn = 1.66 × 10−27 kg
Planck’s constant, h = 6.6 × 10−34 Js
Kinetic energy (K) and velocity (v) are related as:
$K=\frac{1}{2} m_{n} v^{2} \ldots$ (1)
De Broglie wavelength (λ) and velocity (v) are related as:
$\lambda=\frac{h}{m_{n} v}$ ...(2)
Using equation (2) in equation (1), we get:
$K=\frac{1}{2} \frac{m_{n} h^{2}}{\lambda^{2} m_{n}{ }^{2}}=\frac{h^{2}}{2 \lambda^{2} m_{n}}$
$=\frac{\left(6.63 \times 10^{-34}\right)^{2}}{2 \times\left(1.40 \times 10^{-10}\right)^{2} \times 1.66 \times 10^{-27}}=6.75 \times 10^{-21} \mathrm{~J}$
$=\frac{6.75 \times 10^{-21}}{1.6 \times 10^{-19}}=4.219 \times 10^{-2} \mathrm{eV}$
Hence, the kinetic energy of the neutron is 6.75 × 10−21 J or 4.219 × 10−2 eV.
(b) Temperature of the neutron, T = 300 K
Boltzmann constant, k = 1.38 × 10−23 kg m2 s−2 K−1
Average kinetic energy of the neutron:
$K^{\prime}=\frac{3}{2} k T$
$=\frac{3}{2} \times 1.38 \times 10^{-23} \times 300=6.21 \times 10^{-21} \mathrm{~J}$
The relation for the de Broglie wavelength is given as:
$\lambda^{\prime}=\frac{h}{\sqrt{2 K^{\prime} m_{n}}}$
Where,
$m_{n}=1.66 \times 10^{-27} \mathrm{~kg}$
$h=6.6 \times 10^{-34} \mathrm{~J}_{\mathrm{S}}$
$K^{\prime}=6.75 \times 10^{-21} \mathrm{~J}$
$\therefore \lambda^{\prime}=\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 6.21 \times 10^{-21} \times 1.66 \times 10^{-27}}}=1.46 \times 10^{-10} \mathrm{~m}=0.146 \mathrm{~nm}$
Therefore, the de Broglie wavelength of the neutron is 0.146 nm.