A double convex lens has power $P$ and same radii of curvature $R$ of both the surfaces. The radius of curvature of a surface of a plano-convex lens made of the same material with power $1.5 P$ is :
Correct Option: 4
(4) Given, using lens maker's formula
$\frac{1}{f}=(k-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Here, $R_{1}=R_{2}=R$ (For double convex lens)
$\therefore \frac{1}{f}=(\mu-1)\left(\frac{1}{R}-\frac{1}{-R}\right)$
$\Rightarrow P=\frac{1}{f}=(\mu-1) \frac{2}{R}$ .....(i)
For plano convex lens,
$R_{1}=R^{\prime}, R_{2}=\infty$
Using lens maker's formula again, we have
$1.5 P=(\mu-1)\left(\frac{1}{R^{\prime}}-\frac{1}{\infty}\right)$ ....(ii)
$\Rightarrow \frac{3}{2} P=\frac{\mu-1}{R^{\prime}}$
From (i) and (ii),
$\frac{3}{2}=\frac{R^{\prime}}{2 R} \Rightarrow R^{\prime}=\frac{R}{3}$