A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes? (ii) at least 5 successes?
(iii) at most 5 successes?
The repeated tosses of a die are Bernoulli trials. Let X denote the number of successes of getting odd numbers in an experiment of 6 trials.
Probability of getting an odd number in a single throw of a die is, $p=\frac{3}{6}=\frac{1}{2}$
$\therefore q=1-p=\frac{1}{2}$
X has a binomial distribution.
Therefore, $\mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{n-x} q^{n-x} p^{x}$, where $n=0,1,2 \ldots n$
$={ }^{6} \mathrm{C}_{x}\left(\frac{1}{2}\right)^{6-x} \cdot\left(\frac{1}{2}\right)^{x}$
$={ }^{6} \mathrm{C}_{*}\left(\frac{1}{2}\right)^{6}$
(i) P (5 successes) = P (X = 5)
$={ }^{6} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{6}$
$=6 \cdot \frac{1}{64}$
$=\frac{3}{32}$
(ii) P(at least 5 successes) = P(X ≥ 5)
$=\mathrm{P}(\mathrm{X}=5)+\mathrm{P}(\mathrm{X}=6)$
$={ }^{6} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{6}+{ }^{6} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{6}$
$=6 \cdot \frac{1}{64}+1 \cdot \frac{1}{64}$
$=\frac{7}{64}$
(iii) P (at most 5 successes) = P(X ≤ 5)
$=1-P(X>5)$
$=1-P(X=6)$
$=1-{ }^{6} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{6}$
$=1-\frac{1}{64}$
$=\frac{63}{64}$