A diagonal of a parallelogram bisects one of its angles. Show that it is a rhombus.
Given Let $A B C D$ is a parallelogram and diagonal $A C$ bisects the angle $A$.
$\therefore \quad \angle C A B=\angle C A D \quad \ldots$ (i)
To show $A B C D$ is a rhombus.
Proof Since, $A B C D$ is a parallelogram, therefore $A B \| C D$ and $A C$ is a transversal.
$\begin{array}{lll}\therefore & \angle C A B=\angle A C D & \text { [alternate interior angles] }\end{array}$
Again, $A D \| B C$ and $A C$ is a transversal.
$\therefore$ $\angle C A D=\angle A C B$ [alternate interior angles]
So, $\quad \angle A C D=\angle A C B \quad[\because \angle C A B=\angle C A D$, given] $\ldots$ (ii)
Also, $\angle A=\angle C$ [opposite angles of parallelogram are equal]
$\Rightarrow \quad \frac{1}{2} \angle A=\frac{1}{2} \angle C \quad$ [dividing both sides by 2]
$\Rightarrow \quad \angle D A C=\angle D C A \quad$ [from Eqs. (i) and (ii)]
$\Rightarrow \quad C D=A D$
[sides opposite to the equal angles are equal]
But $A B=C D$ and $A D=B C$
[opposite sides of parallelogram are equal]
$\therefore \quad \quad A B=B C=C D=A D$
Thus, all sides are equal. So, $A B C D$ is a rhombus.
Hence proved.