Question:
A cylinder with base radius 8 cm and height 2 cm is melted to form a cone of height 6 cm. Calculate the radius of the base of the cone.
Solution:
We have,
Base radius of the cylinder, $r=8 \mathrm{~cm}$,
Height of the cylinder, $h=2 \mathrm{~cm}$ and
Height of the cone, $H=6 \mathrm{~cm}$
Let the base radius of the cone be $R$.
Now,
Volume of the cone = Volume of the cylinder
$\Rightarrow \frac{1}{3} \pi R^{2} H=\pi r^{2} h$
$\Rightarrow R^{2}=\frac{3 r^{2} h}{H}$
$\Rightarrow R^{2}=\frac{3 \times 8 \times 8 \times 2}{6}$
$\Rightarrow R^{2}=64$
$\Rightarrow R=\sqrt{64}$
$\therefore R=8 \mathrm{~cm}$
So, the radius of the base of the cone is 8 cm.