A copper wire when bent in the form of a square encloses an area of 484 cm2. The same wire is not bent in the form of a circle. Find the area enclosed by the circle.
Area of the circle = 484 cm2
Area of the square $=\mathrm{Side}^{2}$
$\Rightarrow 484=$ Side $^{2}$
$\Rightarrow 22^{2}=$ Side $^{2}$
$\Rightarrow$ Side $=22 \mathrm{~cm}$
Perimeter of the square $=4 \times$ Side
Perimeter of the square $=4 \times 22$
= 88 cm
Length of the wire = 88 cm
Circumference of the circle = Length of the wire = 88 cm
Now, let the radius of the circle be r cm.
Thus, we have:
$2 \pi r=88$
$\Rightarrow 2 \times \frac{22}{7} \times \mathrm{r}=88$
$\Rightarrow \mathrm{r}=14$
Area of the circle $=\pi r^{2}$
$=\frac{22}{7} \times 14 \times 14$
$=616 \mathrm{~cm}^{2}$
Thus, the area enclosed by the circle is 616 cm2.