Question:
A copper sphere of diameter 18 cm is drawn into a wire of diameter 4 mm. Find the length of the wire.
Solution:
We have,
Radius of the sphere, $R=\frac{18}{2}=9 \mathrm{~cm}$ and
Radius of the wire, $r=\frac{4}{2}=2 \mathrm{~mm}=0.2 \mathrm{~cm}$
Let the length of the wire be $l$.
Now,
Volume of the wire $=$ Volume of the copper sphere
$\Rightarrow \pi r^{2} l=\frac{4}{3} \pi R^{3}$
$\Rightarrow l=\frac{4 R^{3}}{3 r^{2}}$
$\Rightarrow l=\frac{4 \times 9 \times 9 \times 9}{3 \times 0.2 \times 0.2}$
$\therefore l=24300 \mathrm{~cm}=243 \mathrm{~m}$
So, the length of the wire is 243 m.