Question:
A constant power delivering machine has towed a box, which was initially at rest, along a horizontal straight line. The distance moved by the box in time ' $t$ ' is proportional to :-
Correct Option: , 2
Solution:
(2)
$\mathrm{P}=\mathrm{C}$
$\mathrm{FV}=\mathrm{C}$
$\mathrm{M} \frac{\mathrm{dV}}{\mathrm{dt}} \mathrm{V}=\mathrm{C}$
$\frac{\mathrm{V}^{2}}{2} \propto \mathrm{t}$
$\mathrm{V} \propto \mathrm{t}^{1 / 2}$
$\frac{\mathrm{dx}}{\mathrm{dt}} \propto \mathrm{t}^{1 / 2}$
$\mathrm{x} \propto \mathrm{t}^{3 / 2}$