Question:
A constant power delivering machine has towed a box, which was initially at rest, along a horizontal straight line. The distance moved by the box in time ' $t$ ' is proportional to :-
Correct Option: , 2
Solution:
$\mathrm{P}=\mathrm{C}$
$\mathrm{FV}=\mathrm{C}$
$\mathrm{M} \frac{\mathrm{dV}}{\mathrm{dt}} \mathrm{V}=\mathrm{C}$
$\frac{V^{2}}{2} \propto t$
$V \propto t^{1 / 2}$
$\frac{\mathrm{dx}}{\mathrm{dt}} \propto \mathrm{t}^{1 / 2}$
$x$ of $\left\lfloor^{3 / 2}\right.$