Question:
A cone of height 20 cm and radius of base 5 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the diameter of the sphere.
Solution:
We have,
the base radius of the cone, $r=5 \mathrm{~cm}$ and
the height of the cone, $h=20 \mathrm{~cm}$
Let the radius of the sphere be $R$.
As,
Volume of sphere $=$ Volume of cone
$\Rightarrow \frac{4}{3} \pi R^{3}=\frac{1}{3} \pi r^{2} h$
$\Rightarrow R^{3}=\frac{\pi r^{2} h \times 3}{3 \times 4 \pi}$
$\Rightarrow R^{3}=\frac{r^{2} h}{4}$
$\Rightarrow R^{3}=\frac{5 \times 5 \times 20}{4}$
$\Rightarrow R^{3}=125$
$\Rightarrow R=\sqrt[3]{125}$
$\Rightarrow R=5 \mathrm{~cm}$
$\Rightarrow$ Diameter of the sphere $=2 R=2 \times 5=10 \mathrm{~cm}$
So, the diameter of the sphere is 10 cm.