A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.
Let the probability of getting a tail in the biased coin beĀ x.
$\therefore P(T)=x$
$\Rightarrow P(H)=3 x$
For a biased coin, P (T) + P (H) = 1
$\Rightarrow x+3 x=1$
$\Rightarrow 4 x=1$
$\Rightarrow x=\frac{1}{4}$
$\therefore \mathrm{P}(\mathrm{T})=\frac{1}{4}$ and $\mathrm{P}(\mathrm{H})=\frac{3}{4}$
When the coin is tossed twice, the sample space is {HH, TT, HT, TH}.
Let X be the random variable representing the number of tails.
$\therefore \mathrm{P}(\mathrm{X}=0)=\mathrm{P}($ no tail $)=\mathrm{P}(\mathrm{H}) \times \mathrm{P}(\mathrm{H})=\frac{3}{4} \times \frac{3}{4}=\frac{9}{16}$
$P(X=1)=P($ one tail $)=P(\mathrm{HT})+P(\mathrm{TH})$
$=\frac{3}{4} \cdot \frac{1}{4}+\frac{1}{4} \cdot \frac{3}{4}$
$=\frac{3}{16}+\frac{3}{16}$
$=\frac{3}{8}$
$P(X=2)=P$ (two tails) $=P(T T)=\frac{1}{4} \times \frac{1}{4}=\frac{1}{16}$
Therefore, the required probability distribution is as follows.