A closed cylinder has volume $2156 \mathrm{~cm}^{3}$. What will be the radius of its base so that its total surface area is minimum.
Let the height, radius of the base and surface area of the cylinder be $h, r$ and $S$, respectively. Then,
Volume $=\pi r^{2} h$
$\Rightarrow 2156=\pi r^{2} h$
$\Rightarrow 2156=\frac{22}{7} r^{2} h$
$\Rightarrow h=\frac{2156 \times 7}{22 r^{2}}$
$\Rightarrow h=\frac{686}{r^{2}}$ ......(1)
Surface area $=2 \pi r h+2 \pi r^{2}$
$\Rightarrow S=\frac{4312}{r}+\frac{44 r^{2}}{7}$ $[$ From eq. (1) $]$
$\Rightarrow \frac{d S}{d r}=\frac{4312}{-r^{2}}+\frac{88 r}{7}$
For maximum or minimum values of $S$, we must have
$\frac{d S}{d r}=0$
$\Rightarrow \frac{4312}{-r^{2}}+\frac{88 r}{7}=0$
$\Rightarrow \frac{4312}{r^{2}}=\frac{88 r}{7}$
$\Rightarrow r^{3}=\frac{4312 \times 7}{88}$
$\Rightarrow r^{3}=343$
$\Rightarrow r=7 \mathrm{~cm}$
Now,
$\frac{d^{2} s}{d r^{2}}=\frac{8624}{r^{3}}+\frac{88}{7}$
$\Rightarrow \frac{d^{2} s}{d r^{2}}=\frac{8624}{343}+\frac{88}{7}$
$\Rightarrow \frac{d^{2} s}{d r^{2}}=\frac{176}{7}>0$
So, the surface area is minimum when $r=7 \mathrm{~cm}$.