Question:
A circular hole of radius $\left(\frac{a}{2}\right)$ is cut out of a circular disc of radius 'a' as shown in figure. The centroid of the remaining circular portion with respect to point ' $O^{\prime}$ will be :
Correct Option: , 3
Solution:
Let $\sigma$ be the uniform mass density of disc then
$\mathrm{x}_{\mathrm{COM}}=\frac{\left(\sigma \pi \mathrm{a}^{2}\right) \mathrm{a}-\sigma \pi\left(\frac{\mathrm{a}^{2}}{4}\right) \times \frac{3 \mathrm{a}}{2}}{\sigma \pi \mathrm{a}^{2}-\frac{\sigma \pi \mathrm{a}^{2}}{4}}$
$=\frac{a-\frac{3 a}{8}}{1-\frac{1}{4}}=\frac{5 a}{6}$