A circle cuts a chord of length 4a on the x-axis and passes through a point on the y-axis,

Question:

A circle cuts a chord of length $4 \mathrm{a}$ on the $x$-axis and passes through a point on the $y$-axis, distant $2 b$ from the origin. Then the locus of the centre of this circle, is :-

  1. A hyperbola

  2. A parabola

  3. A straight line

  4. An ellipse


Correct Option: , 2

Solution:

Let equation of circle is

$x^{2}+y^{2}+2 f x+2 f y+e=0$, it passes through $(0,2 b)$

$\Rightarrow 0+4 b^{2}+2 g \times 0+4 f+c=0$

$\Rightarrow 4 b^{2}+4 f+c=0$             ........(1)

$2 \sqrt{\mathrm{g}^{2}-\mathrm{c}}=4 \mathrm{a}$   .....(2)

$\mathrm{g}^{2}-\mathrm{c}=4 \mathrm{a}^{2} \Rightarrow \mathrm{c}=\left(\mathrm{g}^{2}-4 \mathrm{a}^{2}\right)$

Putting in equation (1)

$\Rightarrow 4 b^{2}+4 f+g^{2}-4 a^{2}=0$

$\Rightarrow x^{2}+4 y+4\left(b^{2}-a^{2}\right)=0$, it represent a parabola.

Leave a comment