Question:
A circle cuts a chord of length $4 \mathrm{a}$ on the $x$-axis and passes through a point on the $y$-axis, distant $2 b$ from the origin. Then the locus of the centre of this circle, is :-
Correct Option: , 2
Solution:
Let equation of circle is
$x^{2}+y^{2}+2 f x+2 f y+e=0$, it passes through $(0,2 b)$
$\Rightarrow 0+4 b^{2}+2 g \times 0+4 f+c=0$
$\Rightarrow 4 b^{2}+4 f+c=0$ ........(1)
$2 \sqrt{\mathrm{g}^{2}-\mathrm{c}}=4 \mathrm{a}$ .....(2)
$\mathrm{g}^{2}-\mathrm{c}=4 \mathrm{a}^{2} \Rightarrow \mathrm{c}=\left(\mathrm{g}^{2}-4 \mathrm{a}^{2}\right)$
Putting in equation (1)
$\Rightarrow 4 b^{2}+4 f+g^{2}-4 a^{2}=0$
$\Rightarrow x^{2}+4 y+4\left(b^{2}-a^{2}\right)=0$, it represent a parabola.