A carrier wave

Question:

A carrier wave $\mathrm{V}_{\mathrm{C}}(\mathrm{t})=160 \sin \left(2 \pi \times 10^{6} \mathrm{t}\right)$ volts is made to vary between $\mathrm{V}_{\max }=200 \mathrm{~V}$ and $\mathrm{V}_{\min }=120 \mathrm{~V}$ by a message signal $\mathrm{V}_{\mathrm{m}}(\mathrm{t})=\mathrm{A}_{\mathrm{m}} \sin \left(2 \pi \times 10^{3} \mathrm{t}\right)$ volts. The peak voltage $A_{m}$ of the modulating signal is_______.

Solution:

Maximum amplitude

$A_{\max }=A_{m}+A_{C}$

$\Rightarrow V_{\max }=V_{m}+V_{C}$

$200=\mathrm{V}_{\mathrm{m}}+160$

$\mathrm{V}_{\mathrm{m}}=40$

$\therefore$ Peak voltage $A_{m}=40$

Ans. 40

Leave a comment