A boy is rolling a $0.5 \mathrm{~kg}$ ball on the frictionless floor with the speed of
$20 \mathrm{~ms}^{-1}$. The ball gets deflected by an obstacle on the way. After
deflection it moves with $5 \%$ of its initial kinetic
energy. What is the speed of the ball now?
Correct Option: , 2
(2)
Given, $\mathrm{m}=0.5 \mathrm{~kg}$ and $\mathrm{u}=20 \mathrm{~m} / \mathrm{s}$
Initial kinetic energy $\left(\mathrm{k}_{\mathrm{i}}\right)=\frac{1}{2} \mathrm{mu}^{2}$
$=\frac{1}{2} \times 0.5 \times 20 \times 20=100 \mathrm{~J}$
After deflection it moves with $5 \%$ of $\mathrm{k}_{\mathrm{i}}$
$\therefore \mathrm{k}_{\mathrm{f}}=\frac{5}{100} \times \mathrm{k}_{\mathrm{i}} \Rightarrow \frac{5}{100} \times 100$
$\Rightarrow \mathrm{k}_{\mathrm{f}}=5 \mathrm{~J}$
Now, let the final speed be ' $v^{\prime} \mathrm{m} / \mathrm{s}$, then :
$k_{\mathrm{f}}=5=\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \mathrm{v}^{2}=20$
$\Rightarrow v=\sqrt{20}=4.47 \mathrm{~m} / \mathrm{s}$