Question:
A body rotating with an angular speed of $600 \mathrm{rpm}$ is uniformly accelerated to $1800 \mathrm{rpm}$ in $10 \mathrm{sec}$. The number of rotations made in the process is_________.
Solution:
$\omega_{f}=\omega_{0}+\alpha t$
$\alpha=1200 \times 6$
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$=600 \times \frac{10}{60}+\frac{1}{2} \times 1200 \times 6 \times \frac{1}{36}$
$\theta=200$