A body of mass ' m ' is launched up on a rough inclined

Question:

A body of mass ' $m$ ' is launched up on a rough inclined plane making an angle of $30^{\circ}$ with the horizontal. The coefficient of friction between the body and plane is $\frac{\sqrt{x}}{5}$ if the time of ascent is half of the time of descent. The value of $x$ is_________.

Solution:

$\mathrm{t}_{\mathrm{a}}=\frac{1}{2} \mathrm{t}_{\mathrm{d}}$

$\sqrt{\frac{2 \mathrm{~s}}{\mathrm{a}_{\mathrm{a}}}}=\frac{1}{2} \sqrt{\frac{2 \mathrm{~s}}{\mathrm{a}_{\mathrm{d}}}}$  .............(i)

$\mathrm{a}_{\mathrm{a}}=\mathrm{g} \sin \theta+\mu \mathrm{g} \cos \theta$

$=\frac{g}{2}+\frac{\sqrt{3}}{2} \mu g$

$\mathrm{a}_{\mathrm{d}}=\mathrm{g} \sin \theta-\mu \mathrm{g} \cos \theta$

$=\frac{\mathrm{g}}{2}-\frac{\sqrt{3}}{2} \mu \mathrm{g}$

using the above values of $\mathrm{a}_{\mathrm{a}}$ and $\mathrm{a}_{\mathrm{d}}$ and putting in eqution (i) we will gate $\mu=\frac{\sqrt{3}}{5}$

Leave a comment