Question.
A body is moving unidirectionally under the influence of a source of constant power. Its displacement in time t is proportional to
(i) $t^{\frac{1}{2}}$
(ii) $t$
(iii) $t^{\frac{3}{2}}$
(iv) $t^{2}$
A body is moving unidirectionally under the influence of a source of constant power. Its displacement in time t is proportional to
(i) $t^{\frac{1}{2}}$
(ii) $t$
(iii) $t^{\frac{3}{2}}$
(iv) $t^{2}$
solution:
(iii) $t^{\frac{3}{2}}$
Power is given by the relation:
P = Fv
$=m a v=m v \frac{d v}{d t}=$ Constant $($ say,$k)$
$\therefore v d v=\frac{k}{m} d t$
$m$ Integrating both sides:
$\frac{v^{2}}{2}=\frac{k}{m} t$
For displacement $x$ of the body, we have:
$v=\frac{d x}{d t}=\sqrt{\frac{2 k}{m} t^{\frac{1}{2}}}$
$d x=k^{\prime} t^{\frac{1}{2}} d t$
Where $k^{\prime}=\sqrt{\frac{2 k}{3}}=$ New constant
On integrating both sides, we get:
$x=\frac{2}{3} k^{\prime} t^{\frac{3}{2}}$
$\therefore x \propto t^{\frac{3}{2}}$
(iii) $t^{\frac{3}{2}}$
Power is given by the relation:
P = Fv
$=m a v=m v \frac{d v}{d t}=$ Constant $($ say,$k)$
$\therefore v d v=\frac{k}{m} d t$
$m$ Integrating both sides:
$\frac{v^{2}}{2}=\frac{k}{m} t$
For displacement $x$ of the body, we have:
$v=\frac{d x}{d t}=\sqrt{\frac{2 k}{m} t^{\frac{1}{2}}}$
$d x=k^{\prime} t^{\frac{1}{2}} d t$
Where $k^{\prime}=\sqrt{\frac{2 k}{3}}=$ New constant
On integrating both sides, we get:
$x=\frac{2}{3} k^{\prime} t^{\frac{3}{2}}$
$\therefore x \propto t^{\frac{3}{2}}$