A body at rest is moved along a horizontal straight line by

Question:

A body at rest is moved along a horizontal straight line by a machine delivering a constant power. The distance moved by the body in time ' $t$ ' is proportional to:

  1. $t^{\frac{3}{2}}$

  2. $t^{\frac{1}{2}}$

  3. $t^{\frac{1}{4}}$

  4. $t^{\frac{3}{4}}$


Correct Option: 1

Solution:

$\mathrm{P}=$ constant

$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{Pt}$

$\Rightarrow \mathrm{v} \propto \sqrt{\mathrm{t}}$

$\frac{d x}{d t}=C \sqrt{t}$               $\mathrm{C}=\mathrm{constant}$

by integration.

$\mathrm{x}=\mathrm{C} \frac{\mathrm{t}^{\frac{1}{2}+1}}{\frac{1}{2}+1}$

$x \propto t^{3 / 2}$

Leave a comment