A boat goes $24 \mathrm{~km}$ upstream and $28 \mathrm{~km}$ downstream in $6 \mathrm{hrs}$. It goes $30 \mathrm{~km}$ upstream and $21 \mathrm{~km}$ downstream in $6 \frac{1}{2}$ hrs. Find the speed of the boat in still water and also speed of the stream.
We have to find the speed of the boat in still water and speed of the stream
Let the speed of the boat in still water be x km/hr and the speed of the stream be y km/hr then
Speed upstream $=(x-y) \mathrm{km} / \mathrm{hr}$
Sped down stream $=(x+y) / \mathrm{m} / \mathrm{hr}$
Now, Time taken to cover $28 \mathrm{~km}$ down stream $=\frac{28}{x+y} h r s$
Time taken to cover $24 \mathrm{~km}$ upstream $=\frac{24}{x-y} h r s$
But, total time of journey is 6 hours
$\frac{24}{x-y}+\frac{28}{x+y}=6 \cdots(i)$
Time taken to cover $30 \mathrm{~km}$ upstream $=\frac{30}{x-y} h r s$
Time taken to cover $21 \mathrm{~km}$ down stream $=\frac{21}{x+y} h r s$
In this case total time of journey is given to $6 \frac{1}{2} h r s$ or $\frac{13}{2} h r s$
$\frac{30}{(x-y)}+\frac{21}{(x+y)}=\frac{13}{2}$......(ii)
By $\frac{1}{x-y}=u$ and $\frac{1}{x+y}=v$ in equation (i) and (ii) we get
$24 u+28 v=6$
$30 u+21 v=\frac{13}{2}$
$24 u+28 v-6=0 \cdots($ iii $)$
$30 u+21 v-\frac{13}{2}=0 \cdots(i v)$
Solving these equations by cross multiplication we get
$\frac{u}{28 \times \frac{-13}{2}-21 \times-6}=\frac{-v}{24 \times \frac{-13}{2}-30 \times-6}=\frac{1}{24 \times 21-30 \times 28}$
$\frac{u}{-182+126}=\frac{-v}{-156+180}=\frac{1}{504-840}$
$\frac{u}{-56}=\frac{-v}{24}=\frac{1}{-336}$
$u=\frac{1}{6}$ and $v=\frac{1}{14}$
Now,
$u=\frac{1}{x-y}=\frac{1}{6}$
$6=x-y \cdots(v)$ and
$v=\frac{1}{14}=\frac{1}{x+y}$
$x+y=14 \cdots(v i)$
By solving equation $(v)$ and $(v i)$ we get,
By substituting $x=10$ in equation (vi) we get
Hence, the speed of the stream is $4 \mathrm{~km} / \mathrm{hr}$
The speed of boat is $10 \mathrm{~km} / \mathrm{hr}$