(i) A 5-m-wide cloth is used to make a conical tent of base diameter 14 m and height 24 m. Find the cost of cloth used at the rate of ₹25 per metre.
(ii) The radius and height of a solid right-circular cone are in the ratio of 5 : 12. If its volume is 314 cm3, find the total surface area. [Take π = 3.14.]
(i)
We have,
the height of the cone, $h=24 \mathrm{~m}$, the base diameter of the cone, $d=14 \mathrm{~m}$
Also, the base radius of the cone, $r=\frac{d}{2}=\frac{14}{2}=7 \mathrm{~m}$
The slant height of the cone, $l=\sqrt{h^{2}+r^{2}}$
$=\sqrt{24^{2}+7^{2}}$
$=\sqrt{576+49}$
$=\sqrt{625}$
$=25 \mathrm{~m}$
The curved surface area of the tent $=\pi r l$
$=\frac{22}{7} \times 7 \times 25$
$=550 \mathrm{~m}^{2}$
$\Rightarrow$ The area of cloth required to make the tent $=550 \mathrm{~m}^{2}$
$\Rightarrow$ The length of the cloth $=\frac{550}{5}=110 \mathrm{~m}$
So, the cost of cloth used $=110 \times 25=$ ₹ 2750
(ii)
The ratio of radius and height of a solid right-circular cone is 5:12.
Let radius, r = 5x and height, h=12x.
Volume = 314 cm3.
$\Rightarrow \frac{1}{3} \pi r^{2} h=314$
$\Rightarrow \frac{1}{3} \times 3.14 \times(5 x)^{2} \times(12 x)=314$
$\Rightarrow x^{3}=\frac{314 \times 3}{3.14 \times 5 \times 5 \times 12}$
$\Rightarrow x^{3}=1 \Rightarrow x=1$
So, radius r = 5 cm and height h = 12 cm.
Using Pythagoras Theorem, slant height is given by $l=\sqrt{r^{2}+h^{2}}=\sqrt{25+144}=\sqrt{169}=13 \mathrm{~cm}$
Total Surface Area of Cone $=\pi r(r+l)=3.14 \times 5 \times(5+13)=3.14 \times 5 \times 18=282.6 \mathrm{~cm}^{2} .$