A 100 μF capacitor in series with a 40 Ω resistance is connected to a 110 V, 60 Hz supply.
(a) What is the maximum current in the circuit?
(b) What is the time lag between the current maximum and the voltage maximum?
Capacitance of the capacitor, $C=100 \mu \mathrm{F}=100 \times 10^{-6} \mathrm{~F}$
Resistance of the resistor, $R=40 \Omega$
Supply voltage, V = 110 V
(a) Frequency of oscillations, ν= 60 Hz
Angular frequency, $\omega=2 \pi \nu=2 \pi \times 60 \mathrm{rad} / \mathrm{s}$
For a RC circuit, we have the relation for impedance as:
$Z=R^{2}+\frac{1}{\omega^{2} C^{2}}$
Peak voltage, $V_{0}=V \sqrt{2}=110 \sqrt{2} \mathrm{~V}$
Maximum current is given as:
$I_{0}=\frac{V_{0}}{Z}$
$=\frac{V_{0}}{\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}}$\
$=\frac{110 \sqrt{2}}{\sqrt{(40)^{2}+\frac{1}{(120 \pi)^{2} \times\left(10^{-4}\right)^{2}}}}$
$=\frac{110 \sqrt{2}}{\sqrt{1600+\frac{10^{8}}{(120 \pi)^{2}}}}=3.24 \mathrm{~A}$
(b) In a capacitor circuit, the voltage lags behind the current by a phase angle ofΦ. This angle is given by the relation:
$\therefore \tan \phi=\frac{\frac{1}{\omega C}}{R}=\frac{1}{\omega C R}$
$=\frac{1}{120 \pi \times 10^{-4} \times 40}=0.6635$
$\phi=\tan ^{-1}(0.6635)=33.56^{\circ}$
$=\frac{33.56 \pi}{180} \mathrm{rad}$
$\therefore$ Time lag $=\frac{\phi}{\omega}$
$=\frac{33.56 \pi}{180 \times 120 \pi}=1.55 \times 10^{-3} \mathrm{~s}=1.55 \mathrm{~ms}$
Hence, the time lag between maximum current and maximum voltage is 1.55 ms.