A 1.6 m tall girl stands at a distance of 3.2 m from a lamp-post and casts a shadow of 4.8 m on the ground. Find the height of the lamp-post by using
(i) trignometric ratios
(ii) property of similar triangles.
Let AC be the lamp post of height.
We assume that ED = 1.6 m, BE = 4.8 m and EC = 3.2 m
We have to find the height of the lamp post
Now we have to find height of lamp post using similar triangles.
$\frac{A C}{B C}=\frac{E D}{B E}$
$\frac{h}{4.8+3.2}=\frac{1.6}{4.8}$
$h=\frac{8}{3}$
Again, we have to find height of lamp post using trigonometric ratios.
In $\triangle A D E$
$\Rightarrow \quad \tan \theta=\frac{1.6}{4.8}$
$\Rightarrow \quad \tan \theta=\frac{1}{3}$
Again in $\triangle A B C$
$\Rightarrow \quad \tan \theta=\frac{h}{4.8+3.2}$
$\Rightarrow \quad \frac{1}{3}=\frac{h}{8}$
$\Rightarrow \quad h=\frac{8}{3}$
Hence the height of lamp post is $\frac{8}{3} \mathrm{~m}$.