A = [1, 2, 3, 5] and B = [4, 6, 9].

Question:

A = [1, 2, 3, 5] and B = [4, 6, 9]. Define a relation R from A to B by R = {(xy) : the difference between x and y is odd, x ∈ A, y ∈ B}. Write R in Roster form.

Solution:

A = [1, 2, 3, 5] and B = [4, 6, 9]

R = {(xy) : the difference between x and y is odd, x ∈ A, y ∈ B}

For x = 1,

$4-1=3$ and $6-1=5$

y = 4, 6

For x = 2,

$9-2=7$

y = 9

For x = 3,

$4-3=1$ and $6-3=3$

y = 4, 6

For x = 5,

$5-4=1$ and $6-5=1$

y = 4, 6

Thus, we have:

R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}

Leave a comment