27 similar drops of mercury are maintained at 10

Question:

27 similar drops of mercury are maintained at 10

$\mathrm{V}$ each. All these spherical drops combine into

a single big drop. The potential energy of the

bigger drop is ............ times that of a smaller drop.

 

Solution:

$(27)\left(\frac{4}{3} \pi r^{3}\right)=\frac{4}{3} \pi R^{3}$

$R=3 r$

Potential energy of smaller drop :

$\mathrm{U}_{1}=\frac{3}{5} \frac{\mathrm{kq}^{2}}{\mathrm{r}}$

Potential energy of bigger drop :

$U=\frac{3}{5} \frac{k Q^{2}}{R}$

$U=\frac{3}{5} \frac{k(27 q)^{2}}{R}$

$U=\frac{3}{5} k \frac{(27)(27) q^{2}}{3 r}$

$U=\frac{(27)(27)}{3}\left(\frac{3}{5} \frac{k^{2}}{r}\right)$

$U=243 U_{1}$

 

Leave a comment