Question.
$2 \times 10^{8}$ atoms of carbon are arranged side by side. Calculate the radius of carbon atom if the length of this arrangement is $2.4 \mathrm{~cm}$.
$2 \times 10^{8}$ atoms of carbon are arranged side by side. Calculate the radius of carbon atom if the length of this arrangement is $2.4 \mathrm{~cm}$.
Solution:
Length of the given arrangement = 2.4 cm
Number of carbon atoms present $=2 \times 10^{8}$
Diameter of carbon atom
$=\frac{2.4 \times 10^{-2} \mathrm{~m}}{2 \times 10^{8}}$
$=1.2 \times 10^{-10} \mathrm{~m}$
$\therefore$ Radius of carbon atom $=\frac{\text { Diameter }}{2}$
$=\frac{1.2 \times 10^{-10} \mathrm{~m}}{2}$
$=6.0 \times 10^{-11} \mathrm{~m}$
Length of the given arrangement = 2.4 cm
Number of carbon atoms present $=2 \times 10^{8}$
Diameter of carbon atom
$=\frac{2.4 \times 10^{-2} \mathrm{~m}}{2 \times 10^{8}}$
$=1.2 \times 10^{-10} \mathrm{~m}$
$\therefore$ Radius of carbon atom $=\frac{\text { Diameter }}{2}$
$=\frac{1.2 \times 10^{-10} \mathrm{~m}}{2}$
$=6.0 \times 10^{-11} \mathrm{~m}$