2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of dihydrogen at 17 °C, at the same pressure
2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of dihydrogen at 17 °C, at the same pressure. What is the molar mass of the gas?
Volume (V) occupied by dihydrogen is given by,
$V=\frac{m}{M} \frac{\mathrm{R} T}{p}$
$=\frac{0.184}{2} \times \frac{\mathrm{R} \times 290}{p}$
Let M be the molar mass of the unknown gas. Volume (V) occupied by the unknown gas can be calculated as:
$V=\frac{m}{M} \frac{\mathrm{R} T}{p}$
$=\frac{2.9}{M} \times \frac{\mathrm{R} \times 368}{p}$
According to the question,
$\frac{0.184}{2} \times \frac{\mathrm{R} \times 290}{p}=\frac{2.9}{M} \times \frac{\mathrm{R} \times 368}{p}$
$\Rightarrow \frac{0.184 \times 290}{2}=\frac{2.9 \times 368}{M}$
$\Rightarrow M=\frac{2.9 \times 368 \times 2}{0.184 \times 290}$
$=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Hence, the molar mass of the gas is $40 \mathrm{~g} \mathrm{~mol}^{-1}$.