1−tan2 45°1+tan2 45° is equal to

Question:

$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$ is equal to

(a) $\tan 90^{\circ}$

(b) 1

(c) $\sin 45^{\circ}$

(d) $\sin 0^{\circ}$

Solution:

We have to find the value of the following

$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$

So

$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$

$=\frac{1-(1)^{2}}{1+(1)^{2}}$

$=\frac{0}{1}$

$=0$

We know that $\left[\begin{array}{r}\tan 45^{\circ}=1 \\ \sin 0^{\circ}=0\end{array}\right]$

$=\sin 0^{\circ}$

Hence the correct option is (d)

Leave a comment