$1+3+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$
Let P(n) be the given statement.
Now,
$P(n)=1+3+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$
Step 1:
$P(1)=1=\frac{3^{1}-1}{2}=\frac{2}{2}=1$
Hence, $P(1)$ is true.
Step 2:
Let $P(m)$ is true.
then,
$1+3+3^{2}+\ldots+3^{m-1}=\frac{3^{m}-1}{2}$
We shall prove that $P(m+1)$ is true.
That is,
$1+3+3^{2}+\ldots+3^{m}=\frac{3^{m+1}-1}{2}$
Now, we have:
$1+3+3^{2}+\ldots+3^{m-1}=\frac{3^{m}-1}{2}$
$\Rightarrow 1+3+3^{2}+\ldots+3^{m-1}+3^{m}=\frac{3^{m}-1}{2}+3^{m} \quad$ [Adding $3^{m}$ to both sides]
$\Rightarrow 1+3+3^{2}+\ldots+3^{m}=\frac{3^{m}-1+2 \times 3^{m}}{2}=\frac{3^{m}(1+2)-1}{2}=\frac{3^{m+1}-1}{2}$
Hence, $P(m+1)$ is true.
By the $p$ rinciple of $m$ athematical $i$ nduction, $P(n)$ is true for all $\mathrm{n} \in \mathrm{N}$.