$1+2+3+\ldots+n=\frac{n(n+1)}{2}$ i.e. the sum of the first $n$ natural numbers is $\frac{n(n+1)}{2}$
Let P(n) be the given statement.
Now,
$\mathrm{P}(n)=1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Step 1:
$P(1)=1=\frac{1(1+1)}{2}=1$
Hence, $P(1)$ is true.
Step 2:
Let $P(m)$ be true.
Then,
$1+2+3+\ldots+m=\frac{m(m+1)}{2}$
We shall now prove that $P(m+1)$ is true.
i. e.,
$1+2+\ldots+(m+1)=\frac{(m+1)(m+2)}{2}$
Now,
$1+2+\ldots+m=\frac{m(m+1)}{2}$
$\Rightarrow 1+2+\ldots m+m+1=\frac{m(m+1)}{2}+m+1 \quad$ [Adding $(m+1)$ to both sides]
$=\frac{m^{2}+m+2 m+2}{2}$
$=\frac{(m+1)(m+2)}{2}$
Hence, $P(m+1)$ is true.
By the principle of mathematical induction, $P(n)$ is true for all $n \in \mathrm{N}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.