ΔABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that ∠BCD is a right angle.
Solution:
In $\triangle A B C$
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\Rightarrow \angle A C B=\angle A B C$ (Angles opposite to equal sides of a triangle are also equal)
In $\triangle \mathrm{ACD}$,
$\mathrm{AC}=\mathrm{AD}$
$\Rightarrow \angle A D C=\angle A C D$ (Angles opposite to equal sides of a triangle are also equal)
In $\triangle B C D$,
$\angle A B C+\angle B C D+\angle A D C=180^{\circ}$ (Angle sum property of a triangle)
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{ACB}+\angle \mathrm{ACD}+\angle \mathrm{ACD}=180^{\circ}$
$\Rightarrow 2(\angle A C B+\angle A C D)=180^{\circ}$
$\Rightarrow 2(\angle B C D)=180^{\circ}$
$\Rightarrow \angle B C D=90^{\circ}$