Chapter-2
 Polynomial

Exercise - 2.1

Q. 1 The graphs of $y=p(x)$ are given in Fig. 2.10 below, for some polynomials, $p(x)$. Find the number of zeroes of $p(x)$ in each case.

The number of zeroes for any graph is the number of values of x for which y is equal to zero. And y is equal to zero at the point where a graph cuts x axis.

So, to find the number of zeroes of a polynomial, watch the number of times it cuts the x axis.
(i) The number of zeroes is 0 as the graph does not cut the x -axis at any point.
(ii) The number of zeroes is 1 as the graph intersects the x -axis at only 1 point.
(iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.
(iv) The number of zeroes is 2 as the graph intersects the x -axis at 2 points.
(v) The number of zeroes is 4 as the graph intersects the x -axis at 4 points.
(vi)The number of zeroes is 3 as the graph intersects the x -axis at 3 points.

Exercise - 2.2

Q. 1 Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 \times 2-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $\mathrm{t}^{2}-15$
(vi) $3 x^{2}-x-4$

Solution:

Zeroes of the polynomial are the values of the variable of the polynomial when the polynomial is put equal to zero.

Let $p(x)$ be a polynomial with any number of terms any number of degree. Now, zeroes of the polynomial will be the values of x at which $\mathrm{p}(\mathrm{x})=0$. If $\mathrm{p}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ is a quadratic polynomial (highest power is equal to 2) and its roots are α and β, then

Sum of the roots $=\alpha+\beta=-b / a$
Product of roots $=\alpha \beta=\mathrm{c} / \mathrm{a}$
(i) $p(x)=x^{2}-2 x-8$

So, the zeroes will be the values of x at which $\mathrm{p}(\mathrm{x})=0$.
Therefore,
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=0$
(We will factorize 2 such that the product of the factors is equal to 8 and difference is equal to 2)
$\Rightarrow \mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=0=(\mathrm{x}-4)(\mathrm{x}+2)$
The value of $x^{2}-2 x-8$ is zero when $x-4=0$ or $x+2=0$,
i.e, $x=4$ or $x=-2$

Therefore, The zeroes of $x^{2}-2 x-8$ are 4 and -2 .
Sum of zeroes $=4+(-2)=2$
$=\frac{-(-2)}{1}=\frac{-(- \text { coefficientof } x)}{\left(\text { coefficientof } x^{2}\right)}$
Hence, it is verified that, sum of Zeros $=\frac{-(\text { coefficientof } x)}{\text { coefficientof } x^{2}}$
Product of zeroes $=4+(-2)=-8=\frac{(-8)}{1}=\frac{\text { constant term }}{\text { coefficientof } x^{2}}$
Hence, it is verified, Product of zeroes $=\frac{\text { constant term }}{\text { coefficientof } x^{2}}$
(ii) $4 s^{2}-4 s+1$
$=(2 s)^{2}-2(2 s) 1+1^{2}$
As, we know $(a-b)^{2}=a^{2}-2 a b+b^{2}$, the above equation can be written as $=(2 \mathrm{~s}-1)^{2}$

The value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, when, $s=1 / 2,1 / 2$.
Therefore, the zeroes of $4 s^{2}-4 s+1$ are $\frac{1}{2}$ and $\frac{1}{2}$.
Sum of zeroes $=\frac{1}{2}+\frac{1}{2}=1=\frac{-(-4)}{4}=\frac{-(\text { coefficientof } s)}{\text { coefficientof } s^{2}}$
Product of zeroes $=$
$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { constant term }}{\text { coeffici entf } s^{2}}$
Hence Verified.
(iii) $6 x^{2}-3-7 x$

$$
=6 x^{2}-7 x-3
$$

(We will factorize 7 such that the product of the factors is equal to 18 and the difference is equal to -7$)=6 x^{2}+2 x-9 x-3$ $=2 x(3 x+1)-3(3 x+1)=(3 x+1)(2 x-3)$

The value of $6 x^{2}-3-7 x$ is zero when $3 x+1=0$ or $2 x-3=0$,
i.e. $x=\frac{-1}{3}$ or $\frac{3}{2}$

Therefore, the zeroes of $6 x^{2}-3-7 x$ are $\frac{-1}{3}$ or $\frac{3}{2}$.
Sum of zeroes $=\frac{-1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{-(\text { coefficientof } x)}{\text { coefficientof } x^{2}}$
Product of zeroes $=\frac{-1}{3} \times \frac{3}{2}=\frac{-1}{2}=\frac{-3}{6}=\frac{\text { constant term }}{\text { coefficientof } x^{2}}$
Hence, verified.
(iv) $4 u^{2}+8 u$
$=4 u^{2}+8 u+0$
$=4 u(u+2)$
The value of $4 u^{2}+8 u$ is zero when $4 u=0$ or $u+2=0$,
i.e., $u=0$ or $u=-2$

Therefore, the zeroes of $4 u^{2}+8 u$ are 0 and -2 .
Sum of zeroes $=0+(-2)=-2=\frac{-(8)}{4}=\frac{-(\text { coefficientof } u)}{\text { coefficientof } u^{2}}$
Product of zeroes $=0+(-2)=0=\frac{0}{4}=\frac{- \text { constant term }}{\text { coefficientof } u^{2}}$
(v) $\mathrm{t}^{2}-15$
$=\mathrm{t}^{2}-(\sqrt{ } 15)^{2}$
$=(\mathrm{t}-\sqrt{ } 15)(\mathrm{t}+\sqrt{ } 15) \quad\left[\right.$ As, $\left.\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}-\mathrm{y})(\mathrm{x}+\mathrm{y})\right]$
The value of $t^{2}-15$ is zero when $(t-\sqrt{ } 15)=0$ or $(t+\sqrt{ } 15)=0$,
i.e., when $t=\sqrt{ } 15$ or $t=-\sqrt{ } 15$

Therefore, the zeroes of $t^{2}-15$ are $\sqrt{ } 15$ and $-\sqrt{ } 15$.
Sum of zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{-(\text { coefficient of } t)}{\text { coefficient of } t^{2}}$

$$
\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{-(\text { coeffici entf } t)}{\text { coeffici entf } t^{2}}
$$

Product of zeroes $=$

$$
(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{- \text { constant term }}{\text { coeffi ci entf } x^{2}}
$$

Hence verified.
(vi) $3 x^{2}-x-4$
(We will factorize 1 in such a way that the product of factors is equal to 12 and the difference is equal to 1$)=3 x^{2}-4 x+3 x-4$ $=x(3 x-4)+1(3 x-4)=(3 x-4)(x+1)$

The value of $3 x^{2}-x-4$ is zero when $3 x-4=0$ or $x+1=0$, when $x=\frac{4}{3}$ or $x=-1$

Therefore, the zeroes of $3 x^{2}-x-4$ are $\frac{4}{3}$ and -1

Sum of zeroes $=\frac{4}{3}+(-1)=\frac{1}{3}=\frac{-(-1)}{3}=\frac{- \text { coefficientof } x}{\text { coefficientof } x^{2}}$
Product of zeroes $=\frac{4}{3}(-1)=\frac{-4}{3}=\frac{\text { constant term }}{\text { coefficientof } x^{2}}$
Hence, verified.
Q. 2 Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i)

$$
\frac{1}{4},-1
$$

(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) 1,1
(v) $\quad-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

Solution: If α, β are roots of an equation, then the quadratic form of this equation can be given by $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
(i) $\frac{1}{4}-1$
we know that for a quadratic equation in the form $a x^{2}+b x+c=0$, and its zeros are α and β, then
sum of zeroes is $\quad \alpha+\beta=\frac{-b}{a}$
and product of zeroes is $\alpha \beta=\frac{c}{a}$
Let the polynomial be, $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, then
$\alpha+\beta=\frac{1}{4}=\frac{-b}{a}$
$\alpha \beta=-1=\frac{-4}{4}=\frac{c}{a}$

Let $\mathrm{a}=4$, then $\mathrm{b}=-1, \mathrm{c}=-4$
Therefore, the quadratic polynomial is $4 \mathrm{x}^{2}-\mathrm{x}-4$.
(ii) $\sqrt{2}, \frac{1}{3}$
we know that for a quadratic equation in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, and its zerors are α and β, then
sum of zeroes is $\alpha+\beta=\frac{-b}{a}$
and product of zeroes is $\alpha \beta=\frac{c}{a}$
Let the polynomial be, $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, then
$\alpha+\beta=\sqrt{2}=\frac{-b}{a}$
and
If $\mathrm{a}=3$, then $\mathrm{b}=-3 \sqrt{2}$, and $\mathrm{c}=1$
Therefore, the quadratic polynomial is $3 x 2-3 \sqrt{2} x+1$
(iii) $0, \sqrt{5}$
we know that for a quadratic equation in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, and its zerors are α and β, then
sum of zeroes is $\alpha+\beta=\frac{-b}{a}$
and product of zeroes is $\alpha \beta=\frac{c}{a}$
Let the polynomial $\mathrm{bax}+\mathrm{bx}+\mathrm{c}$, then
$\alpha+\beta=0=\frac{0}{1}=\frac{-b}{a}$
$\alpha \beta=\sqrt{5}=\frac{\sqrt{5}}{1}=\frac{c}{a}$

If $\mathrm{a}=1$, then $\mathrm{b}=0, \mathrm{c}=\sqrt{5}$
Therefore, the quadratic polynomial is $x^{2}+\sqrt{5}$.
(iv) 1,1
we know that for a quadratic equation in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, and its zerors are α and β, then
sum of zeroes is $\alpha+\beta=\frac{-b}{a}$
and product of zeroes is $\alpha \beta=\frac{c}{a}$
Let the polynomial be $a x^{2}+b x+c$, then
$\alpha+\beta=1=\frac{1}{1}=\frac{-b}{a}$
$\alpha \beta=1=\frac{1}{1}=\frac{c}{a}$
If $\mathrm{a}=1$, then $\mathrm{b}=-1, \mathrm{c}=1$
Therefore, the quadratic polynomial is $\mathrm{x}^{2}-\mathrm{x}+1$
(v) $-\frac{1}{4}, \frac{1}{4}$
we know that for a quadratic equation in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, and its zerors are α and β, then
sum of zeroes is $\alpha+\beta=\frac{-b}{a}$
and product of zeroes is $\alpha \beta=\frac{c}{a}$
Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, then
$\alpha+\beta=1=\frac{-1}{4}=\frac{-b}{a}$
$\alpha \beta=\frac{1}{4}=\frac{c}{a}$

If $\mathrm{a}=4$, then $\mathrm{b}=1, \mathrm{c}=1$
Therefore, the quadratic polynomial is $4 x^{2}+x+1$.
(vi) 4,1
we know that for a quadratic equation in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, and its zerors are α and β, then
sum of zeroes is $\alpha+\beta=\frac{-b}{a}$
and product of zeroes is $\alpha \beta=\frac{c}{a}$
Let the polynomial be $a x^{2}+b x+c$, then
$\alpha+\beta=4=\frac{4}{1}=\frac{-b}{a}$
$\alpha \beta=1=\frac{1}{1}=\frac{c}{a}$
If $\mathrm{a}=1$, then $\mathrm{b}=-4, \mathrm{c}=1$
Therefore, the quadratic polynomial is $\mathrm{x}^{2}-4 \mathrm{x}+1$.

Exercise 2.3

Divide the polynomial by the polynomial and find the quotient and remainder in each of the following:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$
(i)By long division method we have,

$$
\begin{array}{r}
x^{2}-2 \sqrt{x^{3}-3 x^{2}+5 x-3} \\
x^{3} \quad-2 \mathrm{x} \\
-\quad+ \\
\frac{-3 x^{2}+7 \mathrm{x}-3}{}+3 x^{2}+6 \\
\hline \mathrm{x}-9
\end{array}
$$

Quotient $=x-3$
Remainder $=7 x-9$
(ii) By long division method we have,

$$
\begin{array}{r}
x^{2}+x-3 \\
x^{2}-x+1 \sqrt{x^{4}+o x^{3}-3 x^{2}+4 x+5} \\
\frac{x^{4}-x^{3}+x^{2}}{}+\begin{array}{r}
x^{3}-4 x^{2}+4 x+5 \\
x^{3}-x^{2}+x \\
-\quad+\quad- \\
\frac{-3 x^{2}+3 x+5}{-3 x^{2}+3 x-3} \\
+\quad-\quad+ \\
\hline
\end{array}
\end{array}
$$

Quotient $=x^{2}+x-3$
Remainder $=8$
(iii) By long division method we have,

$$
\begin{array}{r}
-x^{2}-2 \\
-x^{2}+2 \sqrt{x^{4}+0 x^{2}-5 x+6} \\
-\begin{array}{r}
x^{4}-2 x^{2} \\
+ \\
\frac{-2 x^{2}-5 \mathrm{x}+6}{2 x^{2}}-4 \\
+\quad+5 \mathrm{x}+10
\end{array}
\end{array}
$$

Quotient $=-x^{2}-2$
Remainder $=-5 x+10$
Q. 2 Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $\mathrm{t}^{2}-3,2 \mathrm{t}^{4}+3 \mathrm{t}^{3}-2 \mathrm{t}^{3}-9 \mathrm{t}-12$
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$
(i) $\mathrm{t}^{2}-3=\mathrm{t}^{2}+0 \mathrm{t}-3$

$$
\begin{array}{r}
2 \mathrm{t}^{2}+3 \mathrm{t}+4 \\
t^{2}+0 t-3 \sqrt{2 t^{4}+3 t^{3}-2 t^{2}-9 t-12} \\
2 t^{4}+0 t^{3}-6 t^{2} \\
-\quad+ \\
3 t^{3}+4 t^{2}-9 t-12 \\
3 t^{3}+0 t^{2}-9 t \\
-\quad+\begin{array}{l}
4 t^{2}+0 t-12 \\
4 t^{2}+0 t-12
\end{array} \\
-\quad-\quad+ \\
0
\end{array}
$$

Since the remainder is 0 ,
Hence, $t^{2}-3$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.
(ii)

$$
\begin{gathered}
3 x^{2}-4 x+2 \\
\mathrm{x}^{2}+3 \mathrm{x}+1 \begin{array}{l}
\sqrt{3 x^{4}+5 x^{3}-7 x^{2}+2 x+2} \\
3 x^{4}+9 x^{3}+3 x^{2} \\
-\quad-\quad- \\
\\
\end{array} \begin{array}{c}
-4 x^{3}-10 x^{2}+2 x+2 \\
-4 x^{3}-12 x^{2}-4 x \\
+\quad+ \\
2 x^{2}+6 x+2 \\
2 x^{2}+6 x+2
\end{array} \\
\end{gathered}
$$

Since the remainder is 0 ,
Hence, $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
(iii)

$$
\begin{array}{r}
x^{2}-1 \\
\mathrm{x}^{2}-3 \mathrm{x}+1 \begin{array}{l}
\sqrt{x^{5}-4 x^{3}+x^{2}+3 x+1} \\
x^{5}-3 x^{2}+x^{2} \\
-\quad+\quad- \\
\hline-x^{3} \\
-x^{3} \\
+
\end{array}+3 x+1 \\
\\
\end{array}
$$

Since the remainder $\neq 0$,
Hence, $x^{3}-3 x+1$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$.
Q. 3 Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
$p(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$

Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
$\therefore\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\left(x^{2}-\frac{5}{3}\right)$ is a factor of $3 \mathrm{x}^{4}+6 \mathrm{x}^{3}-2 \mathrm{x}^{2}-10 \mathrm{x}$ - 5 .

Therefore, we divide the given polynomial by $x^{2}-\frac{5}{3}$.

$$
\begin{aligned}
& 3 x^{4}+0 x^{3}-5 x^{2} \\
& \frac{-\quad+}{6 x^{3}+3 x^{2}-10 x-5} \\
& 6 x^{3}+0 x^{2}-10 x \\
& -\frac{-}{3 x^{2}+0 x-5} \\
& 3 x^{2}+0 x-5 \\
& -\quad-\quad+
\end{aligned}
$$

We know, Dividend $=($ Divisor \times quotient $)+$ remainder $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(x^{2}-\frac{5}{3}\right)\left(3 x^{2}+6 x+3\right)$
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(x^{2}-\frac{5}{3}\right)\left(x^{2}+2 x+1\right)$

As $(a+b)^{2}=a^{2}+b^{2}+2 a b$
So, $x^{2}+2 x+1=(x+1)^{2}$
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=3\left(x^{2}-\frac{5}{3}\right)(x+1)^{2}$ Therefore, its zero is given by $x+1=0$.
$\Rightarrow \mathrm{x}=-1,-1$
Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$. and -1 , 1.
Q. 4 On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$ the quotient and remainder were ($x-2$) and $(-2 x+4)$, respectively. Find $g(x)$.

Solution: Given,
Polynomial, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2$ (dividend)

Quotient $=(x-2)$

Remainder $=(-2 \mathrm{x}+4)$

To find: divisor $=\mathrm{g}(\mathrm{x})$ we know, Dividend $=$ Divisor \times Quotient + Remainder
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2=\mathrm{g}(\mathrm{x}) \times(\mathrm{x}-2)+(-2 \mathrm{x}+4)$
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2+2 \mathrm{x}-4=\mathrm{g}(\mathrm{x})(\mathrm{x}-2)$
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-2=\mathrm{g}(\mathrm{x})(\mathrm{x}-2)$
$\mathrm{g}(\mathrm{x})$ is the quotient when we divide $\left(\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-2\right)$ by $(\mathrm{x}-2)$

$$
\begin{array}{r}
\mathrm{x}-2 \begin{array}{r}
x^{2}-x+1 \\
x^{3}-3 x^{2}+3 x-2 \\
x^{3}-2 x^{2} \\
-\quad+ \\
-x^{2}+3 x-2 \\
-x^{2}+2 x \\
+\quad-2-2 \\
x+2
\end{array} \\
\therefore \mathrm{~g}(\mathrm{x})=\left(x^{2}-\frac{\mathrm{x}-2}{x+1}\right)
\end{array}
$$

Q. 5 Give examples of polynomials and which satisfy the division algorithm and
(i) $\operatorname{deg} \mathrm{p}(\mathrm{x})=\operatorname{deg} \mathrm{q}(\mathrm{x})$
(ii) $\operatorname{deg} \mathrm{q}(\mathrm{x})=\operatorname{deg} \mathrm{r}(\mathrm{x})$
(iii) $\operatorname{deg} r(x)=0$

Degree of a polynomial is the highest power of the variable in the polynomial. For example if $f(x)=x^{3}-2 x^{2}+1$, then the degree of this polynomial will be 3 .
(i) By division Algorithm : $\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{x} \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$

It means when $P(x)$ is divided by $g(x)$ then quotient is $q(x)$ and remainder is $r(x)$ We need to start with $p(x)=q(x)$ This means that the degree of polynomial $p(x)$ and quotient $q(x)$ is same. This can only happen if the degree of $g(x)=0$ i.e $p(x)$ is divided by a constant. Let $p(x)=x^{2}+1$ and $g(x)=2$
$\frac{p(x)}{g(x)}=\frac{x^{2}+1}{2}$

The,
$p(x)=g(x) \times\left(\frac{x^{2}+1}{2}\right)$
Clearly, Degree of $\mathrm{p}(\mathrm{x})=$ Degree of $\mathrm{q}(\mathrm{x})$
2. Checking for division algorithm,
$\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
$=6 \mathrm{x}^{2}+2 \mathrm{x}+2=3\left(3 \mathrm{x}^{2}+\mathrm{x}+1\right)$
$=6 x^{2}+2 x+2$
Thus, the division algorithm is satisfied.
(ii) Let us assume the division of $\mathrm{x}^{3}+\mathrm{x}$ by x^{2},

Here,
$p(x)=x^{3}+x$
$\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$
$\mathrm{q}(\mathrm{x})=\mathrm{x}$ and $\mathrm{r}(\mathrm{x})=\mathrm{x}$
Clearly, the degree of $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ is the same i.e.,
Checking for division algorithm,
$\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x}) \mathrm{x}^{3}+\mathrm{x}$
$=\left(x^{2}\right) \times x+x x^{3}+x=x^{3}+x$
Thus, the division algorithm is satisfied.
(iii) Degree of the remainder will be 0 when the remainder comes to a constant.

Let us assume the division of $\mathrm{x}^{3}+1$ by x^{2}.
Here,
$p(x)=x^{3}+1 g(x)=x^{2}$
$\mathrm{q}(\mathrm{x})=\mathrm{x}$ and $\mathrm{r}(\mathrm{x})=1$
Clearly, the degree of $r(x)$ is 0 . Checking for division algorithm,
$\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x}) \mathrm{x}^{3}+1$
$=\left(\mathrm{x}^{2}\right) \times \mathrm{x}+1 \mathrm{x}^{3}+1=\mathrm{x}^{3}+1$
Thus, the division algorithm is satisfied.

Exercise 2.4

Q. 1 Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$
(ii) $x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

Answer:
(i) $P(x)=2 x^{3}+x^{2}-5 x+2$

Now for zeroes, putting the given values in x .

$$
\begin{aligned}
& \mathrm{P}(1 / 2)=2(1 / 2)^{3}+(1 / 2)^{2}-5(1 / 2)+2 \\
& =(1 / 4)+(1 / 4)-(5 / 2)+2=(1+1-10+8) / 2=0 / 2=0
\end{aligned}
$$

$\mathrm{P}(1)=2 \times 1+1-5 \times 1+2=2+1-5+2=0$
$\mathrm{P}(-2)=2 \times(-2)^{3}+(-2)^{2}-5(-2)+2=(2 \times-8)+4+10+2=-16+16$ $=0$

Thus, $1 / 2,1$ and -2 are zeroes of given polynomial.
Comparing given polynomial with $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$ and Taking zeroes as α, β, and γ, we have
$\mathrm{a}=2, \mathrm{~b}=1, \mathrm{c}=-5, \mathrm{~d}=2$ and $\alpha=\frac{1}{2}, \beta=1, \gamma=-2$
Now, We know the relation between zeroes and the coefficient of a standard cubic polynomial as
$\alpha+\beta+\gamma=-\frac{b}{a}$
Substituting value, we have
$\frac{1}{2}+1-2=\frac{1}{2}$
$\frac{1}{2}=\frac{1}{2}$
Since, LHS = RHS (Relation Verified)
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
$\left(\frac{1}{2} \times 1\right)+(1 \times-2)+\left(-2 \times \frac{1}{2}\right)=-\frac{5}{2}$
$\frac{1}{2}-2-1=-\frac{5}{2}$
$-\frac{5}{2}=-\frac{5}{2}$
Since LHS = RHS, Relation verified.
$\alpha \beta \gamma=-\frac{d}{a}$
$\left(\frac{1}{2} \times 1 \times-2\right)=-\frac{2}{2}$
$-\frac{2}{2}=-\frac{2}{2}$
Since LHS = RHS, Relation verified.
Thus, all three relationships between zeroes and the coefficient is verified.
(ii) $p(x)=x^{3}-4 x^{2}+5 x-2$

Now for zeroes, put the given value in x.
$\mathrm{P}(2)=2^{3}-4(2)^{2}+5 \times 2-2=8-16+10-2=18-18=0$
$P(1)=1^{3}-4(1)^{2}+5 \times 1-2=1-4+5-2=6-6=0$

$$
P(1)=1^{3}-4(1)^{2}+5 \times 1-2=1-4+5-2=6-6=0
$$

Thus, $2,1,1$ are the zeroes of the given polynomial.
Now,
Comparing the given polynomial with $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, we get
$\mathrm{a}=1, \mathrm{~b}=-4 . \mathrm{c}=5, \mathrm{~d}=-2$ and $\alpha=2, \beta=1, \gamma=1$
Now,
$2+1+1=\frac{4}{1}$
$4=4$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
$(2 \times 1)+(1 \times 1)+(1 \times 2)=\frac{5}{1}$
$2+1+2=5$
$5=5$
$\alpha \beta \gamma=-\frac{d}{a}$
$2 \times 1 \times 1=2$
$2=2$
Thus, all three relationships between zeroes and the coefficient is verified.
Q. 2 Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Answer:

For a cubic polynomial equation, $\mathrm{ax} 3+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, and zeroes α, β and γ
we know that
$\alpha+\beta+\gamma=\frac{-b}{a}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
$\alpha \beta \gamma=\frac{-d}{a}$
Let the polynomial be $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, and zeroes α, β and γ.
A cubic polynomial with respect to its zeroes is given by, x^{3} - (sum of zeroes) $x^{2}+$ (Sum of the product of roots taken two at a time) $x-$ Product of Roots $=0$

$$
\begin{aligned}
& x^{3}-(2) x^{2}+(-7) x-(-14)=0 \\
& x^{3}-(2) x^{2}+(-7) x+14=0
\end{aligned}
$$

Hence, the polynomial is $x^{3}-2 x^{2}-7 x+14$.
Q. 3 If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $(a-b)$, a and (a +b). Find a and b .

Answer:
Given
$\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+1$
Zeroes are $=\mathrm{a}-\mathrm{b}, \mathrm{a}+\mathrm{b}, \mathrm{a}$
Comparing the given polynomial with $\mathrm{mx}^{3}+\mathrm{nx}^{2}+\mathrm{px}+\mathrm{q}$, we get,
$=\mathrm{m}=1, \mathrm{n}=-3, \mathrm{p}=1, \mathrm{q}=1$

Sum of zeroes $=\mathrm{a}-\mathrm{b}+\mathrm{a}+\mathrm{a}+\mathrm{b}=-\frac{n}{m}$
$3 a=-\frac{-3}{1}=3$
$a=\frac{3}{3}=3$
The zeroes are $=(1-b), 1$ and $(1+b)$
Product of zeroes $=(1-b)(1+b)$
$(1-b)(1+b)=-q / m$
$1-b^{2}=-\frac{1}{1}=-1$
$\mathrm{b}^{2}=2$
$\mathrm{b}= \pm \sqrt{2}$
So,
We get, $\mathrm{a}=1$ and $\mathrm{b}= \pm \sqrt{2}$
Q. 4 If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm$ $\sqrt{3}$ find other zeroes.

Answer:

Given:
$2+\sqrt{3}$ and $2-\sqrt{ } 3$ are zeroes of given equation, Therefore, $(x-2+\sqrt{3})(x-2-\sqrt{ } 3)$ should be a factor of given equation. Also, $(x-2+\sqrt{3})(x-2-\sqrt{3})=x^{2}-2 x-\sqrt{ } 3 x-2 x+4+2 \sqrt{ } 3+\sqrt{ } 3 x-2 \sqrt{3}$ - 3

$$
=x^{2}-4 x+1
$$

To find other zeroes, we divide given equation by $x^{2}-4 x+1$

$$
\begin{gathered}
\mathrm{x}^{2}-2 \mathrm{x}-35 \\
\mathrm{x}^{2}-4 \mathrm{x}+1 \begin{array}{c}
\sqrt{x^{4}-6 x^{3}-26 x^{2}+138 x-35} \\
x^{4}-4 x^{3}+x^{2} \\
-+\quad- \\
+\quad \begin{array}{c}
-2 x^{3}-27 x^{2}+138 x-35 \\
-2 x^{3}+8 x^{2}-2 x \\
+ \\
+
\end{array} \\
\frac{-35 x^{2}+140 x-35}{-35 x^{2}+140 x-35}+ \\
+ \\
+
\end{array}
\end{gathered}
$$

We get,
$\mathrm{x}^{4}-6 \mathrm{x}^{3}-26 \mathrm{x}^{2}+138 \mathrm{x}-35=\left(\mathrm{x}^{2}-4 \mathrm{x}+1\right)\left(\mathrm{x}^{2}-2 \mathrm{x}-35\right)$
Now factorizing $\mathrm{x}^{2}-2 \mathrm{x}-35$ we get,
$x^{2}-2 x-35$ is also a factor of given polynomial and $x^{2}-2 x-35=(x-$ 7) $(x+5)$

The value of polynomial is also zero when,
$x-7=0$
or $\mathrm{x}=7$
And, $x+5=0$
Or $\mathrm{x}=-5$
Hence, 7 and -5 are also zeroes of this polynomial.
Q. 5 If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 k+k$ the remainder comes out to be $x+a$, find k and a.

Answer:

To solve this question divide $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ by $x^{2}-2 x+$ k by long division method

Let us divide, by $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ by $x^{2}-2 x+k$

$$
\begin{gathered}
\mathrm{x}^{2}-4 \mathrm{x}+(8-\mathrm{k}) \\
\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{k} \sqrt{x^{4}-6 x^{3}+16 x^{2}-25 x+10} \\
x^{4}-2 x^{3}+k x^{2} \\
-\quad+\quad- \\
\begin{array}{c}
-4 x^{3}+(16-k) x^{2}-25 x+10 \\
-4 x^{3}+8 x^{2} \\
+\quad-\quad-4 \mathrm{kx} \\
\hline
\end{array} \\
\frac{(8-k) x^{2}+(4 \mathrm{k}-25) \mathrm{x}+10}{(8-k) x^{2}+(16-2 \mathrm{k}) \mathrm{x}+(8-\mathrm{k}) \mathrm{x}} \\
\frac{-\quad+}{(2 \mathrm{k}-9) \mathrm{x}+\left(10-8 \mathrm{k}+k^{2}\right)}
\end{gathered}
$$

So, remainder $=(2 k-9) \mathrm{x}+\left(10-8 \mathrm{k}+\mathrm{k}^{2}\right)$
But given remainder $=x+a \Rightarrow(2 k-9) x+\left(10-8 k+k^{2}\right)=x+a$
Comparing coefficient of x , we have $2 \mathrm{k}-9=1 \Rightarrow 2 \mathrm{k}=10 \Rightarrow \mathrm{k}=$ 5andComparing constant term, $10-8 \mathrm{k}+\mathrm{k}^{2}=\mathrm{a}$
$\Rightarrow \mathrm{a}=10-8(5)+5^{2}$
$\Rightarrow \mathrm{a}=10-40+25 \Rightarrow \mathrm{a}=-5$. So, the value of k is 5 and a is -5.

